Discussion. The molecule is extended with a trans junction between the rings [average torsion angle across the ring junction is $\left.177.5(1.6)^{\circ}\right]$. The six-membered rings are both in a flattened chair conformation as shown by the average value for ring torsion angles, $44.0(2 \cdot 3)^{\circ}$, and the larger than normal ring angles [average internal ring angle is $114 \cdot 7(1 \cdot 0)^{\circ}$]. The average $\mathrm{C}-\mathrm{N}$ bond length is 1.44 (1) \AA and the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle is $117.8(1 \cdot 0)^{\circ}$. The average $\mathrm{C}-\mathrm{C}$ bond length is 1.48 (1) \AA and the average $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle is $115 \cdot 6(1 \cdot 1)^{\circ}$.

The structure of the naturally occurring pumiliotoxin C (2-n-propyl-5-methyl-cis-decahydroquinoline hydrochloride) was reported earlier (Daly, Tokuyama, Habermehl, Karle \& Witkop, 1969). The present molecule differs from pumiliotoxin C in the position of the methyl group [on $C(5)$ in pumiliotoxin and on $C(7)$ in the present molecule] and in the configuration of the junction of the fused rings (there is a cis junction in pumiliotoxin). The stereo configuration and molecular packing of (I) are illustrated in Fig. 1. The packing is very similar in both crystals and the hydrogen-
bonding system is the same for both molecules, linking them into zigzag columns along the b direction. The $\mathrm{N} \ldots \mathrm{Cl}$ distances are $3 \cdot 13$ and $3 \cdot 18 \AA$ in pumiliotoxin C and $3 \cdot 11$ (1) and $3 \cdot 27$ (1) \AA for (I) (see Fig. 1). In both cases these are the only intermolecular approaches less than van der Waals separations.

This work was supported in part by the NIAMD of the National Institutes of Health.

References

Busing, W. R., Martin, K. O., Levy, H. A., Ellison, R. D. Hamilton, W. C., Ibers, J. A., Johnson, C. K. \& Thiessen, W. E. (1971). ORXFLS3. Oak Ridge National Laboratory.
Daly, J. W., Tokuyama, T., Habermehl, G., Karle, I. L. \& Witкор, B. (1969). Liebigs Ann. 729, 198-204.
Gilardi, R. D. (1973). Acta Cryst. B29, 2089-2095.
Habermehl, G. \& Andres, H. (1973). Unpublished results. Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859. Kissing, W. (1972). Thesis, Univ. of Darmstadt.

Acta Cryst. (1974). B30, 2907

Cobalt Vanadate, $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$, and Nickel Vanadate, $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$

By E. E. Sauerbrei, R. Faggiani and C. Calyo
Department of Physics, McMaster University, Hamilton, Ontario, Canada

(Received 26 June 1974; accepted 3 July 1974)

Abstract

Cobalt divanadate: monoclinic, space group $P 2_{1} / c, a=6.594$ (2), $b=8.380$ (1), $c=9.470$ (9) \AA, $\beta=100 \cdot 17$ (3) ${ }^{\circ}, Z=4, D_{m}=4.29, D_{x}=4.33 \mathrm{~g} \mathrm{~cm}^{-3}$. Nickel divanadate: monoclinic, space group $P 2_{1} / c$, $a=6.515$ (8), $b=8.303$ (7), $c=9.350$ (6) \AA and $\beta=$ $99.86(8)^{\circ}, Z=4, D_{m}=4 \cdot 44, D_{x}=4.41 \mathrm{~g} \mathrm{~cm}^{-3}$. The crystals were grown from the melt. The structures were refined by full-matrix least-squares methods from a model obtained from the Patterson function of $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. The divalent cations are octahedrally coordinated to oxygen atoms and the anion consists of corner-sharing VO_{4} tetrahedra. The $\mathrm{V}-\mathrm{O}-\mathrm{V}$ angle is 117.5° in the cobalt sait and 117.6° in the nickel salt. The average $\mathrm{V}-\mathrm{O}(-\mathrm{V})$ and terminal $\mathrm{V}-\mathrm{O}$ bond lengths are 1.848 and $1.694 \AA$ in $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and 1.853 and $1.683 \AA$ in $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$.

Introduction. A survey of the structures of stoichiometry $\mathrm{M}_{2} \mathrm{X}_{2} \mathrm{O}_{7}$, with the anion based upon corner sharing XO_{4} tetrahedra, by Brown \& Calvo (1970), suggested that these compounds can be related to one of the known alkali metal dichromate series provided that the cation's radius exceeds a value near $1 \AA$ and related to thortveitite below this boundary. Recent structural studies of the rare-earth disilicates, reviewed by Flesche (1973), shows that the boundary region be-

tween these two areas is rich in new structural types. At the lower end of the ionic radii scale the divanadates also show a variety of new structures as indicated by that of $\mathrm{Mg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (Gopal \& Calvo, 1974), $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (Calvo \& Faggiani, 1974) and the present structures.
A crystal of $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ with dimensions $0.21 \times 0.145 \times$ 0.19 mm and a ground sphere of $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ with radius 0.12 mm were used to collect 1162 and 1787 unique reflections of positive measure respectively using a Syntex $P \overline{1}$ automatic diffractometer (scintillation counter; graphite monochromatized Mo $K \alpha, \lambda=$ $0.71069 \AA$). .

For $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}, 990$ reflexions had intensities greater than 3σ and 272 with $0<I \leq 3 \sigma$ were considered unobserved. For $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ the analogous values are 1487 and 300 respectively. Reffexions $h 0 l$ with l odd and $0 k 0$ with k odd were systematically absent. The intensities were corrected for absorption, Lorentz and polarization effects. $\mu_{\mathrm{CO}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}}=90.7 \mathrm{~cm}^{-1}$ and $\mu_{\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}}=102.3$ cm^{-1}. The structure of $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ was determined from the Patterson function and both structures were refined by full-matrix least-squares methods. Atomic form factors for $\mathrm{Ni}^{2+}, \mathrm{Co}^{2+}, \mathrm{V}^{3+}$ and O^{-}were taken from Cromer \& Waber (1965) and corrected for anomalous dispersion. Weights were chosen as $w=\left[3 \cdot 26-0 \cdot 15 F_{v}+0.0027 F_{o}^{2}\right]^{-1}$ for $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $w=$
$\left[1.8+0.005 F_{o}+0.0022 F_{o}^{2}\right]^{-1}$ for $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. A parameter was varied to account for the effects of extinction as suggested by Larson (1967). The final R and $R_{w}(=$ $\left\{\sum w\left|F_{o}-F_{c}\right|^{2} / \sum w F_{o}^{2}\right\}^{1 / 2}$) are 0.034 and 0.042 for $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and 0.048 and 0.069 for $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$. The final positional and thermal parameters are in Tables 1 and 2.* Note that the thermal parameters of the atoms in $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ are larger than those in $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ by a factor of 2 or 3. This may be as a result of inadequate absorption corrections for $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ due to the irregular shape of the crystal.

Discussion. The structure contains two types of octahedrally coordinated M^{2+} ions with mean $\mathrm{M}(1)-\mathrm{O}$ and $\mathrm{M}(2)-\mathrm{O}$ bond lengths of 2.074 and $2.088 \AA$ for $\mathrm{M}=\mathrm{Co}^{2+}$ and 2.039 and $2.052 \AA$ for $\mathrm{M}=\mathrm{Ni}^{2+}$. The V ions are tetrahedrally coordinated to oxygen atoms which share a bridging oxygen atom, $\mathrm{O}(1)$. Five of the six terminal oxygen atoms are shared with two divalent cations while the sixth, bonded to only one M ion shows the shortest $\mathrm{V}-\mathrm{O}$ bond length in both structures. The bond lengths and angles are presented in Table 3.

The MO_{6} polyhedra, as a result of edge sharing,

* Tables of observed and calculated structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30638 (16 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, England.
form linked chains running parallel to the c axis as shown in Fig. 1. Adjacent chains are connected by edge sharing across centres of symmetry at $0 \frac{1}{2} 0$ and those translationally equivalent along the chain. These edges are shared between centrosymmetrically related $M(1) \mathrm{O}_{6}$ groups. Since the $\mathrm{O}(1)-\mathrm{O}(5)$ edge at the centre of the cell is not shared the structure does not form sheets of edge-sharing MO_{6} groups characteristic of the thortveitite (Cruickshank, Lynton \& Barclay, 1962) and $\mathrm{Er}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Smolin \& Shepelov, 1970) structures. In these structures the anions share only terminal oxygen atoms with the cations. In contrast with the present

Fig. 1. Projection of the cation octahedra in Ni and Co divanadate onto the $b c$ plane.

Table 1. Positional and thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ for $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ with standard errors in parentheses
The values of $U_{i J}$ were obtained from $\beta_{t J}=2 \pi^{2} b_{l} b_{j} U_{l j}$ where the $\beta_{l j}$ appear in the structure factor expression as $\exp \left[-\left(\beta_{11} h^{2}+\ldots\right.\right.$ $\left.\left.+2 \beta_{12} h k+\ldots\right)\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Ni}(1)$	$0 \cdot 14645$ (9)	$0 \cdot 12126$ (8)	$0 \cdot 46331$ (6)	26 (1)	$22 \cdot 2$ (9)	$19 \cdot 8$ (7)	-1.9 (6)	$4 \cdot 3$ (7)	-0.3 (5)
$\mathrm{Ni}(2)$	0.30510 (10)	0.38681 (7)	0.67944 (6)	25 (1)	$22 \cdot 4$ (9)	$19 \cdot 8$ (7)	0.0 (7)	$4 \cdot 1$ (7)	0.4 (5)
V (1)	0.36206 (11)	0.76019 (10)	0.53125 (8)	23 (2)	20 (1)	$20 \cdot 4$ (8)	0.9 (9)	$3 \cdot 5$ (8)	-0.7 (6)
V (2)	$0 \cdot 19456$ (12)	$0 \cdot 01854$ (10)	$0 \cdot 81303$ (8)	24 (2)	21 (1)	$17 \cdot 6$ (8)	-1.0(8)	$2 \cdot 8$ (8)	-0.1 (6)
$\mathrm{O}(1)$	$0 \cdot 6010$ (5)	$0 \cdot 1313$ (4)	$0 \cdot 1242$ (4)	35 (6)	35 (4)	30 (3)	0 (4)	12 (4)	3 (3)
$\mathrm{O}(2)$	$0 \cdot 4271$ (5)	$0 \cdot 1249$ (4)	$0 \cdot 3940$ (4)	32 (6)	37 (4)	29 (3)	-7 (4)	5 (4)	0 (3)
$\mathrm{O}(3)$	$0 \cdot 1689$ (6)	0.3694 (4)	$0 \cdot 4608$ (4)	57 (7)	27 (4)	28 (3)	-3 (4)	3 (4)	6 (3)
$\mathrm{O}(4)$	$0 \cdot 2571$ (5)	$0 \cdot 3600$ (4)	$0 \cdot 1808$ (4)	50 (7)	31 (4)	24 (3)	3 (4)	6 (4)	-2 (3)
O(5)	$0 \cdot 6820$ (6)	$0 \cdot 3726$ (4)	$0 \cdot 3486$ (4)	69 (8)	31 (4)	33 (3)	-4 (4)	7 (4)	3 (3)
$\mathrm{O}(6)$	$0 \cdot 0280$ (5)	$0 \cdot 0849$ (5)	0.2497 (4)	44 (7)	38 (4)	27 (3)	-12 (4)	6 (4)	-1 (3)
$\mathrm{O}(7)$	$0 \cdot 8850$ (5)	$0 \cdot 3793$ (4)	$0 \cdot 0082$ (4)	33 (7)	37 (4)	35 (3)	-3 (4)	7 (4)	-4 (3)

Table 2. Positional and thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ for $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ with standard errors in parentheses
The values of $U_{l j}$ were obtained from $\beta_{i j}=2 \pi^{2} b_{i} b_{j} U_{l j}$ where the $\beta_{l j}$ appear in the structure factor expression as $\exp \left[-\left(\beta_{11} h^{2}+\ldots\right.\right.$ $\left.\left.+2 \beta_{12} h k+\ldots\right)\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Co}(1)$	$0 \cdot 1470$ (1)	$0 \cdot 1215$ (1)	$0 \cdot 46400$ (6)	59 (3)	72 (3)	90 (4)	(3)	14 (3)	-11 (3)
$\mathrm{Co}(2)$	$0 \cdot 3077$ (1)	0.3784 (1)	0.68073 (6)	61 (3)	71 (3)	85 (4)	-2 (3)	15 (3)	-1 (2)
V (1)	$0 \cdot 3608$ (1)	$0 \cdot 7588$ (1)	0.53076 (8)	71 (3)	91 (3)	109 (3)	-7 (2)	23 (2)	1 (2)
V (2)	$0 \cdot 1941$ (1)	0.0186 (1)	0.81435 (7)	75 (3)	96 (3)	106 (3)	-1 (2)	23 (2)	4 (2)
$\mathrm{O}(1)$	$0 \cdot 6049$ (5)	$0 \cdot 1308$ (4)	$0 \cdot 1233$ (3)	77 (14)	131 (14)	112 (14)	5 (12)	25 (11)	(12)
$\mathrm{O}(2)$	$0 \cdot 4291$ (5)	$0 \cdot 1277$ (4)	$0 \cdot 3972$ (3)	69 (13)	124 (14)	138 (14)	-7 (12)	30 (11)	6 (12)
$\mathrm{O}(3)$	$0 \cdot 1709$ (5)	$0 \cdot 3702$ (4)	$0 \cdot 4602$ (3)	124 (15)	124 (15)	110 (14)	139 (15)	21 (12)	-11 (11)
$\mathrm{O}(4)$	$0 \cdot 2552$ (5)	$0 \cdot 3603$ (4)	$0 \cdot 1840$ (3)	102 (14)	103 (14)	130 (15)	-7 (12)	89 (11)	8 (11)
O(5)	$0 \cdot 6794$ (5)	$0 \cdot 3730$ (4)	0.3489 (4)	158 (15)	119 (15)	144 (14)	-27 (13)	31 (12)	9 (12)
$\mathrm{O}(6)$	0.0275 (5)	$0 \cdot 0820$ (4)	0.2467 (3)	92 (14)	143 (14)	124 (14)	-16(12)	42 (11)	-5 (12)
$\mathrm{O}(7)$	$0 \cdot 8532$ (5)	$0 \cdot 3781$ (4)	0.0075 (4)	73 (14)	119 (14)	170 (15)	-5 (11)	31 (11)	2 (12)

structures, although the anions are accommodated between adjacent interconnected edge-sharing MO_{6} groups in all these structures, the anions have a nearly eclipsed configuration whereas the centre of symmetry at the bridging oxygen atom confers the staggered configuration to these disilicates.

Although a number of the members of the $\mathrm{M}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ family have the thortveitite (Cruickshank, Lynton \&

Table 3. Bond lengths and angles in $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ with standard errors in parentheses

	$\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$	$\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$
$\mathrm{M}(1)-\mathrm{O}(2) a$	2.041 (4) \AA	2.068 (3) \AA
-O(3) a	2.065 (4)	2.088 (3)
-O(4)d	2.041 (3)	2.085 (3)
--(6)a	2.051 (3)	2.096 (3)
-O(7) c	2.026 (4)	2.055 (3)
-O(7)d	2.012 (4)	2.050 (3)
$\mathrm{M}(2)-\mathrm{O}(1) d$	2.083 (4)	$2 \cdot 130$ (3)
-O(2)d	2.027 (4)	2.069 (4)
-O(3)a	2.087 (3)	2.129 (4)
-O(4)d	2.071 (4)	$2 \cdot 103$ (3)
-O(5) b	2.017 (4)	2.029 (3)
-O(6)d	2.028 (4)	2.068 (3)
$\mathrm{V}(1)-\mathrm{O}(1) c$	1.853 (4)	1.855 (3)
-O(2) b	1.716 (3)	1.719 (4)
-O(5) b	$1 \cdot 634$ (4)	1.640 (3)
-O(7) c	$1 \cdot 710$ (4)	1.714 (3)
$\mathrm{V}(2)-\mathrm{O}(1) b$	1.840 (3)	1.842 (3)
$-\mathrm{O}(3) d$	1.697 (4)	1.695 (3)
-O(4)d	1.699 (4)	1.700 (3)
-O(6) b	1.693 (3)	$1 \cdot 697$ (3)
$\mathrm{O}(1)-\mathrm{V}(1)-\mathrm{O}(2)$	115.9 (3) ${ }^{\circ}$	115.4 (3) ${ }^{\circ}$
$-\mathrm{V}(2)-\mathrm{O}(4)$	112.5 (3)	112.9 (3)
$-\mathrm{V}(1)-\mathrm{O}(5)$	$102 \cdot 3$ (3)	$102 \cdot 4$ (3)
$-\mathrm{V}(2)-\mathrm{O}(3)$	$106 \cdot 2$ (3)	$106 \cdot 0$ (3)
$-\mathrm{V}(1)-\mathrm{O}(7)$	112.3 (3)	112.4 (3)
$-\mathrm{V}(2)-\mathrm{O}(6)$	$107 \cdot 0$ (3)	$107 \cdot 5$ (3)
$\mathrm{O}(2)-\mathrm{V}(1)-\mathrm{O}(5)$	108.5 (3)	108.3 (3)
$\mathrm{O}(4)-\mathrm{V}(2)-\mathrm{O}(3)$	$109 \cdot 7$ (4)	$109 \cdot 3$ (3)
$\mathrm{O}(2)-\mathrm{V}(1)-\mathrm{O}(7)$	$109 \cdot 8$ (3)	$109 \cdot 7$ (3)
$\mathrm{O}(4)-\mathrm{V}(2)-\mathrm{O}(6)$	$110 \cdot 8$ (4)	$110 \cdot 4$ (3)
$\mathrm{O}(5)-\mathrm{V}(1)-\mathrm{O}(7)$	$107 \cdot 5$ (4)	$108 \cdot 1$ (3)
$\mathrm{O}(3)-\mathrm{V}(2)-\mathrm{O}(6)$	$110 \cdot 6$ (3)	$110 \cdot 7$ (3)
$\mathrm{V}(1)-\mathrm{O}(1)-\mathrm{V}(2)$	$117 \cdot 1$ (2)	$117 \cdot 6$ (2)

Symmetry transformations:
$a=x, y, z ; b=\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z ; c=\bar{x}, \bar{y}, \bar{z} ; d=x, \frac{1}{2}-y, \frac{1}{2}+z$.

Fig. 2. Projection of the structure of Ni and Co divanadate onto the $b c$ plane.

Barclay, 1962) or thortveitite-like structures, $\mathrm{Ni}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Co}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ have more features related to the dichromate or large cation series (Brown \& Calvo, 1970). In addition, to the nearly eclipsed anion configuration and the concomitant small V-O-V bond angle the anions are arranged in a manner similar to that in $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Hagman, Jansson \& Magnéli, 1968). That is, the anions pack in columns whose dimensions are defined by the repulsion between the backbone oxygen atoms. These atoms, consisting of the bridging oxygen atoms and one terminal oxygen atom at each end of the anion, define a plane which contains or nearly contains the pentavalent ions.

These columns of anions are arranged in the same centred pattern as in $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ with the columns at the centre rotated by 90° from those at the corner (see Fig. 2). Further, one of the cations, M(2) bridges across the anion sharing terminal oxygen atoms, $\mathrm{O}(3)$ and $\mathrm{O}(5)$, with the anion. The $\mathrm{Sr}(2)$ site in $\alpha-\mathrm{Sr}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ is similarly bonded to $\mathrm{P}_{2} \mathrm{O}_{7}$. In this latter system Mn^{2+} preferentially substitutes into the $\operatorname{Sr}(1)$ site (Calvo, Leung \& Stager, 1968). Similar differential substitution might be possible in these vanadates.
These studies indicate the limited usefulness of a plot of X^{5+} and M^{2+} radii in defining structural types since it does differentiate successfully among the $\mathrm{M}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ series. There are indications that a number of these divanadates are polymorphs and that some of these might be thortveitite-like in character. Pedregosa, Baran \& Aymonino (1973) have reported monoclinic phases for $\mathrm{Mg}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ prepared at temperatures lower than the melting points. The powder pattern of the former seems to be isotypic with that of thortveitite-like $\alpha-\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1967), and that of $\mathrm{Cu}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ seems to be isotypic with thortveitite.

This research has been supported by a grant from the National Research Council of Canada.

References

Brown, I. D. \& Calvo, C. (1970). J. Solid State Chem. pp. 173-179.
Calvo, C. (1967). Acta Cryst. 23, 289-295.
Calvo, C. \& Faggiani, R. (1974). Acta Cryst. Submitted for publication.
Calvo, C., Leung, K. Y. \& Stager, C. V. (1968). J. Chem. Phys. 49, 3653-3656.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Cruickshank, D. W. J., Lynton, H. \& Barclay, G. A. (1962). Acta Cryst. 15, 491-498.

Flesche, J. (1973). Struct. Bond. 13, 99-197.
Gopal, R. \& Calvo, C. (1974). Acta Cryst. B30, 2491-2493.
Hagman, L-O., Jansson, I. \& Magnéli, C. (1968). Acta Chem. Scand. 22, 1419-1429.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Pedregosa, J. C., Baran, E. J. \& Aymonino, P. G. (1973). Z. Kristallogr. 139, 221-224.

Smolin, Yu. I. \& Shepelev, Yu. F. (1970). Acta Cryst. B26, 484-492.

